

1st SMARTER Conference on Smart Specialisation and Territorial Development 28-30 September, Seville

Challenge-led and participatory learning process to facilitate urban strategies for innovation on low carbon futures

Cristian Matti, Fred Steward and Andreas Huck

30 September 2016, Seville

The policy context of climate change

Climate change requires new challenge-led approach that reframes the policy agenda compared to the traditional technology-driven model

It is more attuned to <u>systemic rather than singular innovation</u>, and offers a broader definition of innovation which highlights social, organisational, and business model novelty.

Challenge-led action research

- Support the creation of environments (co-creation, collaboration) for a wide range of stakeholders to facilitate systemic transition through replicating, broadening and scaling up
- Clustering projects, cities can deepen their understanding of socio-technical system in cities
- Participatory approach as a mechanism to bring 'analysts' and 'actors' together to co-produce a shared 'map' of each transition cluster as a sociotechnical system network.

Sociotechnical system and transition approach

- Networks and organisation of a multi-actor network "transition arena" (Loorbach & Rotmans, 2006, 2010)
- Policy agenda shifts from macro and micro level, to a new focus of transformation at the meso regime level (Steward, 2012)

Learning process and entrepreneurship

- Institutional Entrepreneurship for Knowledge Regions (Sotarauta, 2010)
- Collective process & exchange, combination and adaptation of different type of knowledge and best practices (Nevens et al, 2013) (Van de Kerkhof & Wieczorek, 2005)
- Expansive learning as multi-voiced sideways learning (Engeström and Sannino, 2009)

Transitions, learning processes and urban specialization

Urban specialization

- Industrial dynamics and urban growth as a branching process (Frenken and Boschma, 2007)
- Entrepreneurial process of discoveries and dynamic feedback loops (Foray et al, 2009)

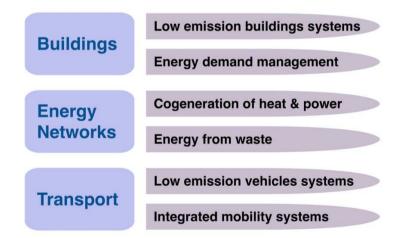
Participatory visualization methods

- Mapping sociotechnical systems for dissemination and engagement (Scott, 2015)
- Action research and co-creative collaboration (Emmel, 2008; EWMP, 2015; Rambaldi et al., 2006; Schiffer & Hauck, 2010)
- Planning and monitoring & evaluation tool designed to help the people involved in a project Participatory Impact Pathway Analysis(PIPA) (Ely an Oxlt, 2014) Steps Centre IDS-SPRU

There is a lack of capacity of different actors across domains to drive process of system analysis as well as problem structuring and envisioning.

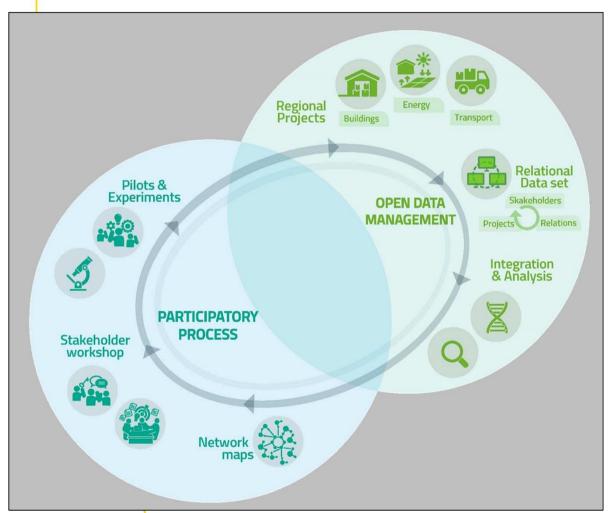
- 1. Can more reflexive and inclusive approaches of management as learning approach be applied to overcome that critical limitation?
- 2. How do those approaches contribute to define sociotechnical systems in cities and, by doing so, facilitate actions towards urban specialization?

8 cities involved


Frankfurt, Birmingham, Valencia, Castellon, Modena, Bologna, Budapest and Wroclaw

The empirical case Transition cities project

Clusters and arenas


3 main clusters and 6 transitions arenas

The approach

Mix method approach and policy action

Participatory process + pilots and experiments

4 Rounds of interactions

- Data Updated + participatory workshops
- Experimenting in network mapping:
 - Separated clusters (January)
 - City system (April)
 - Innovation Categories (June)
 - Cluster and innovation categories (October)

Sociotechnical network mapping through cluster analysis

Key objectives and challenges

- 1. The purpose of the network maps is to develop a new framework for understanding the patterns of system wide change.
- 2. It uses a relational approach designed to reveal inter-linkages and the role of different actors in the process of change.
- 3. It is a new type of 'language' for addressing the dynamics of transition.
- Enrolment and mobilisation of the policy and stakeholder network needed for system innovation

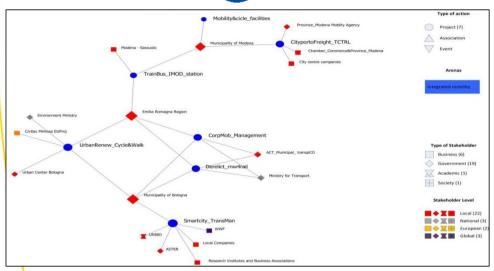
Policy applications

The cities use the results of this process to design and undertake <u>pilots and experiments in relation to the priority areas</u>; promote new start-ups; leverage in other EU funds as well as explore new institutional and business models in order to maximise impact on carbon reduction.

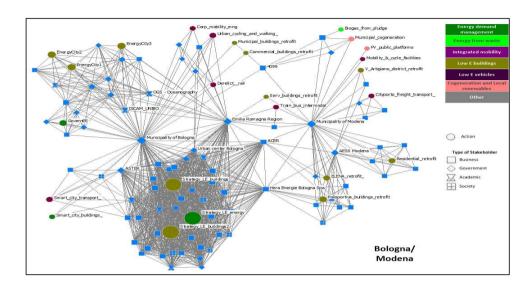
Cluster analysis

What can we analyse?

- Knowledge diffusion among cluster (Type, scope, sector, etc.)
- Relations for knowledge exchange (Type of collaboration, Coordination and facilitation mechanism)
- The role played by individual actors involved in the transmission of knowledge
- Local institutions as bridges connecting internal and external actors
- Use, combination and adaptation of existing knowledge bases to foster innovation (Emergence of new sector)


Key dimensions of innovation and interaction

- Common barriers and governance issues
- Integrative innovation models
- Potential replication and extensions of existing technologies
- User and business engagement
- New financial and procurement models
- Regulatory frameworks



Bologna/Modena - Network maps 2015

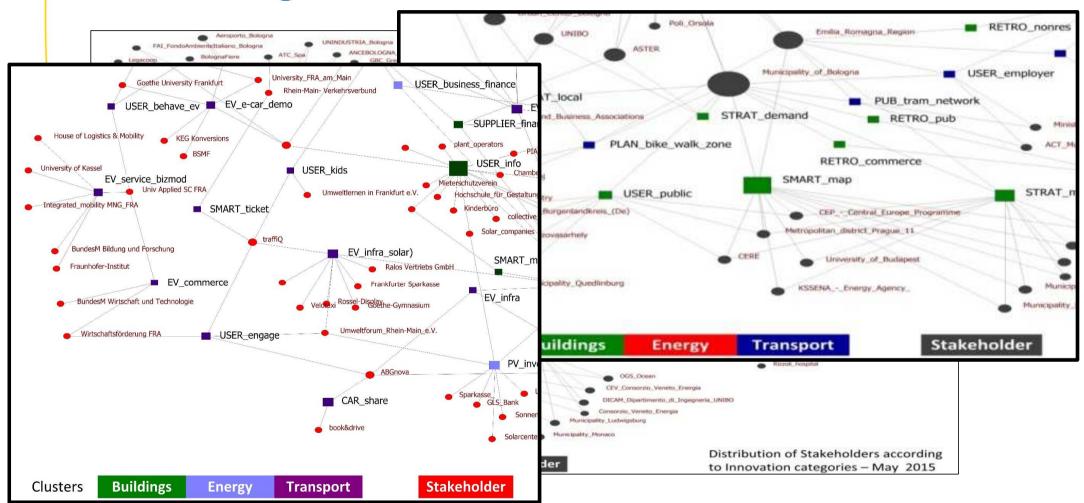
January- First interaction – Single cluster <u>Lessons learnt</u>

- Governance configuration: specialized local government units in the different clusters.
- Need better understanding o f cities configuration & subunits – showing closeness & separateness

April - Second interaction – City System <u>Lessons learnt</u>

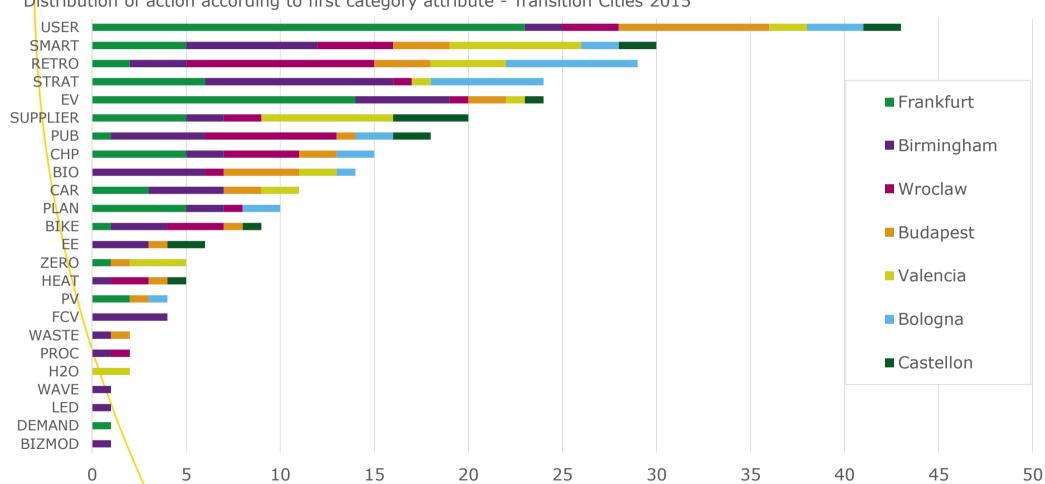
- Lack of understanding of the innovation process and regarding knowledge transfer and potential replication of some actions in different context.
- Next step: Indicate innovation focus of subclusters more clearly

Copernicus Institute of Sustainable Development



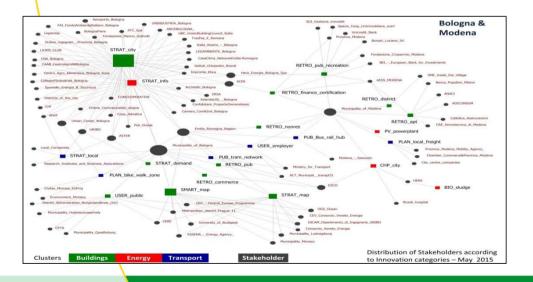
Classification scheme and attributes

	TECHNOLOGY	SOCIAL ACTORS		POLICY MODE		SYSTEM		ACTIVITY	
EV	Electric Vehicle	USER	End user, consumer citizen	PROC	Procurement	PUB	Accessible and used by the public	Design	Design
ВІКЕ	Bicycle	SUPPLIER	Supplier company or business	FIN	Finance	INFRA	Infrastructure	Demo	Demonstration
		SME	Small and medium sized firms	STRAT	Strategy	ZONE	Designated spatial area or zone	Bizmod	Business model
FCV	Fuell cell vehicle			PLAN	Land use planning			Res	Research
CAR	Automobile			Engage	Engagement				
SMART	Information & Communication Technology			Behave	Behaviour				
RETRO	Retrofitting								
ZERO	Zero emission buildings								
EE	Energy Efficiency general								
DEMAND	End use demand management								
вю	Bioenergy								
PV	Solar photovoltaic								
СНР	Combined heat and power, cogeneration, trigeneration								
HEAT	Heating systems								
WASTE	Waste treatment processes								
H20	Water management								


Classification scheme and attributes

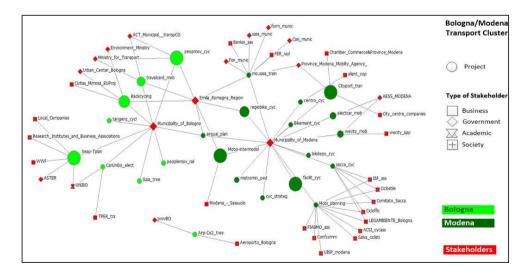
Classification scheme and attributes

Distribution of action according to first category attribute - Transition Cities 2015



June - Third interaction – Innovation categories Lessons learnt

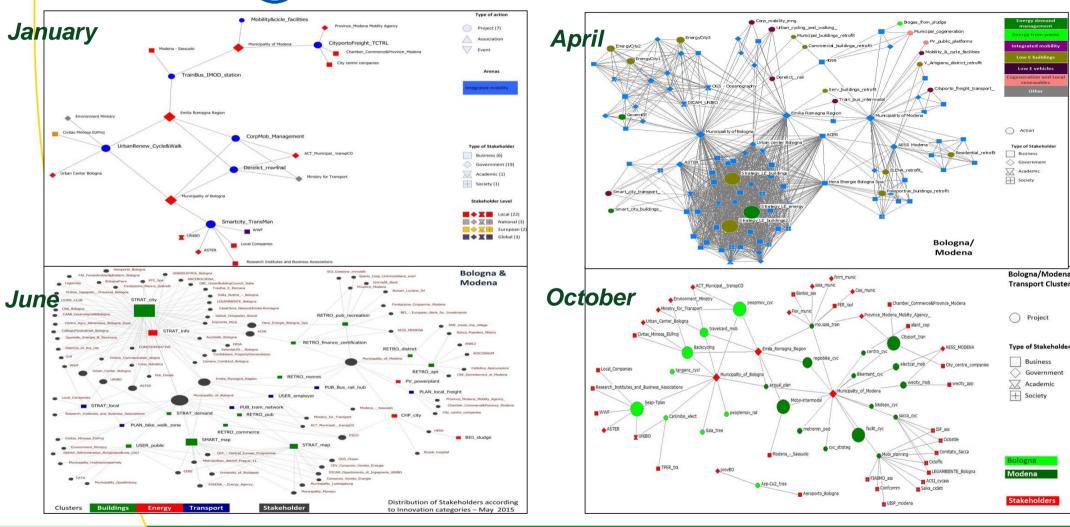
- Diverse understandings have been found in term of the knowledge and innovation management as well as the role of different actors
- Simplify and narrow down the analysis of knowledge bases at cluster level



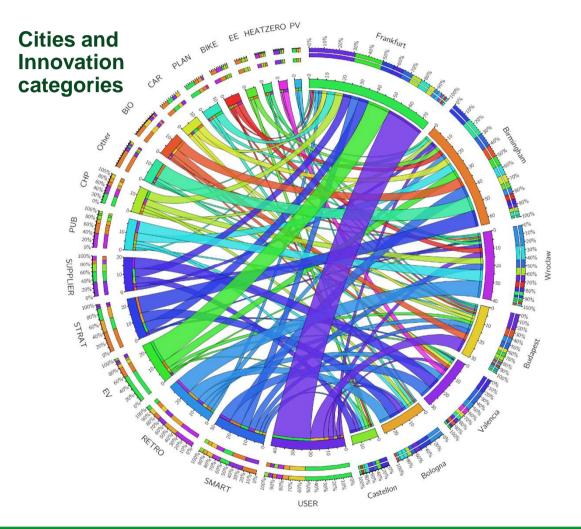
Bologna/Modena - Network maps 2015

October - Fourth interaction - Cluster & Innov Cat

Lessons learnt


- Introducing financial variables clarify the priorities in the regional portfolio but the social needs and visioning are not represented
- Next step: introduce stakeholder views as part of a visioning exercise

Bologna/Modena - Network maps 2015


Inclusive approaches of management as learning approach

- The rounds of interaction have set up a learning process for all the participants, stakeholders, experts and local authorities
- Different perspectives and expectations regarding the application of the method
 - ✓ Decision making, policy evaluation, foresight
 - Cultural background: beliefs system, value setting and priorities
- Collectively constructed socio-technical systems
 - Understanding of knowledge flows, longitudinal perspective and cross policy domain (policy mix configurations)
 - Conflict of interest regarding knowledge production process
 - ✓ Role of local government and university in science-practice interactions

Patterns of urban specialization

Lessons learn on tracking specialization patterns

- The confrontation of perceptions of urban clusters and the network maps facilitates the reformulation of the socio-technical system for exploring innovation opportunities
- The conceptualization of clusters and areas of specialization is strongly related to the scale of the analysis but differs significantly among cities
- The governance configuration reveals overlapping dimensions: the knowledge flows, the financial aspect and the political elements
- Innovation categories for system definition facilitate the identification of specialization pattern among technology, type of actor, policy mode and system component

Conclusions

- Layers of learning based in the existence and quality of institutions, but the context is dynamic in term of actors interaction and policy intervention
- Underlying capacity building process by experimenting with system analysis, problem structuring and comparison with other contexts
- Variety of challenges and perspectives facilitate more than one practitioner narrative about challenge and application of the method
- Highlights of specialization pattern in terms of regional setting and combination of locally available assets (i.e. knowledge and experience)

Thank you for your attention

c.p.matti@uu.nl cristian.matti@climate-kic.org www.cristianmatti.com

