THE IMPACT OF THE DIGITAL TRANSFORMATION ON THE GEOGRAPHY OF INNOVATION

Caroline Paunov

Head of Secretariat of the OECD-TIP Working Party

27 September 2018

The analysis presented in this document is part of the OECD TIP project on Digital and Open Innovation. Findings are provisional. The views expressed here are those of the authors and do not necessarily represent the views of the OECD or its member countries.

Structure

2 Why does it matter for the geography of innovation?

Evidence on co-location of research & industry

Policy implications

- 1. Marginal cost of producing and scaling up **intangible products** changes innovation in the digital age
 - i. more collaborative ii. faster
 - iii. more service-based iv. with data as core input
- **2.** Market dynamics are affected at social, industrial and *regional level*
- 3. Distance is not "dead" -> the world is "spiky"
- Support for regions needs to take into account these dynamics & new ways of connecting -> research institutions are pivotal

Structure

1 What are the impacts of digital transformation on innovation?

2 Why does it matter for the geography of innovation?

Evidence on co-location of research & industry

Policy implications

1. WHAT IS THE IMPACT OF THE DIGITAL TRANSFORMATION ON INNOVATION?

Most innovations today (in products, processes and business models) **are at least partially digital** (i.e. enabled by digital tools or embodied in data & software)...

Digital technologies lower the marginal cost of producing and scaling up **intangible products** (fluidity)

Key characteristics of innovation in the digital age

2

Data as core input

Data from a variety of sources (e.g. consumer behaviour, business processes, research) are a key input for innovation – they enable developing new and highly customised products, and optimising processes. Artificial intelligence (AI) and machine learning tools critically rely on big data.

Lower production costs and fluidity of innovative products

Digital technologies drastically lower the marginal costs of producing and scaling up intangible products ('fluidity'). Effects spread to the entire economy as tangible products increasingly embody intangible components, transforming them into smart and connected products ('Internet of Things').

Characteristics of innovation in the digital age

Servitisation

3

4

Digital technologies offer opportunities for innovative services. They lead to a blurring of the boundaries between manufacturing and services innovation as manufacturers develop services to complement their products while service providers enter manufacturing.

Faster innovation cycles

Digital technologies accelerate innovation cycles. Virtual simulation and 3D printing speed up design, prototyping and testing, reducing costs and time-to-market. Direct releases of product upgrades on easily accessible online markets have also become more frequent.

Collaborative innovation

Innovation is more collaborative as innovation requires mixing skills, expertise and technologies. New tools for open innovation (e.g. industry platforms) facilitate such collaborations.

Source: Guellec and Paunov (2018), Innovation in the Digital Age, OECD Science, Technology and Innovation Outlook, forthcoming

Collal Innova

Structure

2 Why does it matter for the geography of innovation?

Evidence on co-location of research & industry

Policy implications

2. WHY DOES IT MATTER FOR THE GEOGRAPHY OF INNOVATION?

0

99

0

Non-rivalry of knowledge makes the market production different from the tangible goods

⇒ knowledge production is subject to massive economies of scale: the more products sold, the lower the average cost

Distributional questions

Industrial, territorial and social inclusiveness

Territorial inclusiveness (places)

Social inclusiveness (people)

Industrial, territorial and social inclusiveness

Firms/sectors

Rising differential in market performance

People

Rising income & welfare differentials

Places

Rising differential between cities, urban & rural areas → the world is spiky

Interactions between the three dimensions

Business concentration

- Increased income inequality (redistribution of market rents among stakeholders of the benefitting companies)
- Increased <u>geographical inequality</u> (current competition between US cities to attract Amazon 2nd headquarters)

Individuals' income concentration

Increased geographical inequality (large cities vs. the country side)

The geographical concentration of innovation

- Zero communication cost promised the « death of distance » innovation could take place everywhere...
- ... The opposite has happened over the past decade: large cities are leading innovation - location is more relevant than ever.
- Location matters because interpersonal contact (which requires physical proximity) is key to knowledge sharing
- The **fluidity of data** allows it to go wherever it is best used... it goes to large cities

Structure

2 Why does it matter for the geography of innovation?

Evidence on co-location of research & industry

Policy implications

3. EVIDENCE ON CO-LOCATION OF RESEARCH AND INDUSTRY

Source: European Tertiary Kegister (ETEK, 2018), Integrated Postsecondary Education Data System (TPEDS, 2018), Kegister of Public-Sector Organizations (ORGREG, 2018) and World Higher Education Database (WHED, 2018).

Source: Information of inventor address is taken from **PATSTAT** (autumn, 2017 version).

Location of research institutions

Selected Western European countries, 1993-2013

Source: European Tertiary Register (ETER, 2018), Integrated Postsecondary Education Data System (IPEDS, 2018), Register of Public-Sector Organizations (ORGREG, 2018) and World Higher Education Database (WHED, 2018).

Location of EPO inventors Selected Western European countries, 1993-2013

Source: Information of inventor address is taken from **PATSTAT** (autumn, 2017 version).

Location of research institutions North America, 1993-2013

Source: European Tertiary Register (ETER, 2018), Integrated Postsecondary Education Data System (IPEDS, 2018), Register of Public-Sector Organizations (ORGREG, 2018) and World Higher Education Database (WHED, 2018).

22

Location of research institutions Canada and United States, 1993-2013

Source: European Tertiary Register (ETER, 2018), Integrated Postsecondary Education Data System (IPEDS, 2014), Register of Public-Sector Organizations (ORGREG, 2018) and World Higher Education Database (WHED, 2017).

24

Source: Information of inventor address is taken from PATSTAT (autumn, 2017 version).

Impact of geographic proximity to universities Evidence using proximity to historical mines

- Co-location of universities and industry might be driven by local business dynamics
- To identify causal effects of proximity to universities, we use proximity to historical mines

 $distance_university_i = \alpha_1 + distance_mine_i + u_i$ (1st stage)

 $\Delta \ln_{industry_patenting_{i}^{1993-2013}} = \alpha_2 + distance_{university_i} + \varepsilon_i$ (2nd stage)

Historical mines predict distance to modern universities because technical universities were established around mines in the 19th century

 Provided education in engineering and applied sciences according to needs of industrial revolution

 Less (but not unrelated !) to modern dynamics of innovation ecosystems

Sample For estimating proximity effects

Country	Observations	Country	Observations
Australia	6,755	Japan	10,511
Austria	3,145	Korea	4,369
Belgium	8,649	Luxembourg	328
Canada	43,740	Latvia	151
China	5,714	Netherlands	6,199
Czech Republic	3,198	Norway	1,189
Denmark	1,841	New Zealand	1,324
Estonia	131	Poland	580
Finland	1,006	Portugal	267
France	5,975	Sweden	2,762
Germany	46,889	Slovenia	226
Greece	661	Slovak Republic	25
Hungary	784	Spain	3,090
Ireland	3,681	Switzerland	8,480
Israel	9,088	Turkey	730
Iceland	785	United Kingdom	50,171
Italy	3,963	United States 23	
TOTAL			468,465

27

Dependent variable:	Proximity in km to closest university (Instrument)	Growth of industry EPO patent applications <u>over 2012-13</u> (1 year)	Growth of industry EPO patent applications <u>over 2008-13</u> (5 year)	Growth of industry EPO patent applications <u>over 2003-13</u> (10 year)
	(1)	(2)	(3)	(4)
Proximity in km to closest pre- 1900 mine	0.100 *** (0.005)			
Proximity in km to closest university		0.001 ** (0.000)	0.003 *** (0.001)	0.005 ** (0.002)
Observations	468,465	468,465	320,862	167,314

Note: *, **, and *** indicate significance at 10%, 5% and 1% levels respectively

Source: Borowiecki and Paunov (forthcoming), Cross-country perspectives on the role of universities

Structure

2 Why does it matter for the geography of innovation?

Evidence on co-location of research & industry

Policy implications

4. WHAT WAY TO GO FOR POLICY?

A number of priorities for innovation policy to set

Principles for innovation policies in the digital age

Source: Guellec and Paunov (forthcoming) "Innovation policies in the digital age", in OECD (forthcoming) STI Outlook 2018

Questions for smart specialisation strategies

1. *In view of dynamics of concentration*, what are **realistic** options available for diversification?

2. What are the <u>desirable</u> ways of diversification from a national and trans-national perspective in the digital age?

3. How to *take* **<u>advantage of market drivers</u> & build more effective tools for regional development?**

Some food for thought to answer those questions

- Proximity still matters & leads to strong concentration (top cities -> real estate, congestion, ...) ...
- ... yet new features of collaboration undeniably gain in importance: virtual platforms, connections in proximity & across distances and multi-disciplinarity

 Public research policies & knowledge cocreation options are core in new format: multi-disciplinarity

Structure

2 Why does it matter for the geography of innovation?

Evidence on co-location of research & industry

Policy implications

- 1. Marginal cost of producing and scaling up **intangible products** changes innovation in the digital age
 - i. more collaborative ii. faster
 - iii. more service-based iv. with data as core input
- **2.** Market dynamics are affected at social, industrial and *regional level*
- 3. Distance is not "dead" -> the world is "spiky"
- 4. Support for regions needs to take into account these dynamics & new ways of connecting -> research institutions are pivotal

OECD-TIP Digital and Open Innovation project

Project website: <u>www.innovationpolicyplatform.org/TIPdigital</u>

Recent project events:

OECD-TIP project on Assessing the impacts of knowledge transfer and policy

Project website: <u>www.innovationpolicyplatform.org/impact</u>

Upcoming event:

Recent project events:

<image><image><section-header><text>

CSTP-TIP Workshop:

Semantic analysis for innovation policy

Paris, 12-13 March 20: Agenda

WORKSHOP

"STIMULATING KNOWLEDGE TRANSFER: CHALLENGES AND POLICY RESPONSES"

Location: Teatro Thalia, Estrada das Laranjeiras 205, Lisbon, Portugal

TIP website: <u>oe.cd/tip</u>

Contact: Caroline.Paunov@oecd.org