Relatedness, academic inventors and smart specialization in Italian NUTS3 regions

Francesco Quatraro Alessandra Scandura

Dep. of Economics and Statistics "C. de Martiis" University of Torino Collegio Carlo Alberto

2018 SMARTER Conference on Smart Specialisation and Territorial Development Seville, Sep 27th-28th 2018

The paper in a nutshell

What is the impact of academic inventors' involvement into local invention dynamics on relatedness for technological diversification? Does academic inventors' involvement into patenting activity constrain the role of relatedness?

- Outcome of interest: entry of regions in new technological specialisations
- Predictors of interest: relatedness to existing specialisations, academic inventors' involvement in patenting, interaction between the two

Motivation: increased policy and academic interest on the role of regional branching within the debate on smart specialisation strategies (S3)

Expected contribution: uncover knowledge dynamics behind smart specialisation, notably with respect to the role of academic knowledge

Literature: relatedness, and...

- The regional branching literature show that that regions will stay close to their existing capabilities when moving into new products and technologies (Boschma and Frenken, 2011): relatedness is a key pillar of the S3 approach (Boschma, 2014).
- However, the debate on regional diversification patterns has started questioning the desirability of relatedness-driven strategies, because of **path-dependence** and **lock-in** effect.
- The capacity to enter in new and **unrelated activities** might prove to be a key asset for regions willing to activate long-term development patterns.

Literature: ...unrelatedness

- Unrelated diversification is likely to ensure enduring economic growth and decreasing unemployment (Frenken et al., 2007; Davies and Tonts, 2010; Neffke et al., 2018).
- Understanding of the factors helping regions to develop the **capacity to diversify** in loosely related activities becomes of paramount importance
- The few existing investigations stress the role of **foreign firms** in engendering regional structural change and the specialization in cross-cutting technologies like **KETs** (DAmbrosio et al., 2017; Montresor and Quatraro, 2017; Neffke et al., 2018).

Literature: what mitigates relatedness?

- Novelty creation results from **recombination** of heterogeneous and dispersed **knowledge components** (Weitzman, 1996; Fleming and Sorenson, 2004, Saviotti, 2007): **inventors** are key actors in this process
- Academic inventors possess knowledge and skills that make them more receptive toward innovation and more likely to engage in **boundary-spanning** research (e.g. March and Simon, 1958; Hargadon, 2006)
- Academic inventors' involvement is a dimension of codified **local innovation capability** that is necessary to command wide areas of technological space

 \Rightarrow Hp: the involvement of academic inventors in local innovation dynamics mitigates the impact of relatedness on the entry of regions in new technological specializations

- Patent data from OECD Regpat database: link patent-NUTS regions
- Academic inventor identification from database on Academic Patenting in Europe (APE-INV)
- NUTS 3 data from Cambridge Econometrics EU Regional Database
- NUTS 2 data from Italian Institute for National Statistics and Chamber of Commerce
- \Rightarrow Panel of 103 NUTS 3 ("provinces") over period 1998-2009 (N=1236)

Variables

Dependent variable

• **ma_entry**: 5 years moving average of **entry** = count of new specialisations in year-nuts3, based on patent tech. classes

Regressors of interest

- **ma_relatedness**: 5 years moving average of **relatedness** = proximity of new specialisations to old ones, based on patent tech. classes
- acad_pat: dummy indicating academic inventors' involvement into team of inventors, 1 if at least one academic inventor is involved
- ma_relatedness*acad_pat: interaction term capturing mitigation effect

Variables

Control variables

- R&D: research and development expenditure in year-nuts3
- new firms: new registered companies in year-nuts3
- empl: employment in year-nuts3
- **gdp**: gdp in year-nuts3

Descriptive statistics

Variable	Obs	Mean	Std. Dev.	Min	Max
ma_entry	1,236	22.54078	18.33755	.2	87.4
ma relatedness	1,236	.0116925	.0149436	.0000207	.0866874
acad pat	1,236	.4757282	.4996311	0	1
R&D	1,236	147649.2	275369.2	3685.321	2417934
new firms	1,224	4010.303	4457.97	536	33690
gdp	1,236	13.58036	18.96304	1.533	148.935
empl	1,236	231.4739	292.8336	31.116	2164.37

	ma_entry	ma_relatedness	acad_pat	R&D	New_firms	gdp	empl
ma entry	1.0000						
ma relatedness	0.9539*	1.0000					
acad pat	0.4774*	0.4119*	1.0000				
R&D	0.5898*	0.6613*	0.2959*	1.0000			
new firms	0.5783*	0.6515*	0.3555*	0.9187*	1.0000		
gdp	0.6511*	0.7378*	0.3381*	0.9521*	0.9621*	1.0000	
empl	0.6432*	0.7226*	0.3544*	0.9451*	0.9796*	0.9941*	1.0000

Methodology

- ma_entry=F(ma_relatedness, acad_pat, interaction, control variables)
- linear dep. var., balanced panel

\Downarrow

- \checkmark Fixed effects panel regressions
- \checkmark 1-year lagged regressors
- \checkmark Inverse sine transformation 1 to ease interpretation of results

¹inverse_
$$y = \log(y_i + (y_i^2 + 1)^{1/2})$$

Results: fixed effects regressions

	(1)	(2)	(3)	(4)
Fixed effects	ma_entry	ma_entry	ma_entry	ma_entry
ma_relatedness	13.14***	12.35***	16.56***	15.29***
	(2.822)	(2.811)	(3.068)	(3.070)
acad pat	0.0193	0.0167	0.0596***	0.0513**
	(0.0164)	(0.0164)	(0.0219)	(0.0220)
ma relatedness*acad pat			-3.829***	-3.236**
			(1.375)	(1.376)
R&D		0.179***		0.168***
		(0.0575)		(0.0576)
new firms		-0.180**		-0.175**
		(0.0702)		(0.0701)
gdp		-0.307		-0.287
Sar		(0.261)		(0.260)
empl		-0.183		-0.203
empi		(0.246)		(0.245)
Constant	3.372***	4.734***	3.345***	4.861***
Constant	(0.0406)	(1.327)	(0.0416)	(1.325)
Observations	1,133	1,122	1,133	1,122
Adi. R-squared	0.280	0.291	0.284	0.295
Ц	369.8	379.5	374.1	382.6
F	46.11	36.12	43.44	34.48
P	0	0	0	0

Standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1

Robustness check: mixed effects regressions

	(1)	(2)	(3)	(4)
Mixed effects	ma_entry	ma_entry	ma_entry	ma_entry
ma relatedness	20.40***	12 15***	24 69***	12 44***
Ind_Tendeditess	(2 354)	(2.462)	(2 619)	(2.806)
acad pat	0.0279*	(2.402)	0.0780***	0.0646***
acau_pat	(0.0279	(0.0168)	(0.0220)	(0.0228)
ma relatedness*acad nat	(0.0103)	(0.0108)	(0.0220)	2 421**
ma_relatedness acad_pat			-4.077	-5.451
D & D		0 427***	(1.377)	(1.442)
R&D		(0.0252)		(0.0(20)
C		(0.0352)		(0.0628)
new_tirms		-0.166**		-0.102
		(0.0646)		(0.0676)
gdp		0.262		0.194
		(0.224)		(0.248)
empl		0.0534		0.265
		(0.219)		(0.242)
Constant	3.195***	-1.515*	3.162***	-0.578
	(0.159)	(0.845)	(0.156)	(0.994)
Observations	1.122	1,122	1,122	1,020
Number of groups	20	20	20	20
converged	1	1	1	1
11	33.28	64.50	40.21	69.34
chi2	600.5	717.9	618.3	784 5
n	0	0	0	0
r	•	0	0	0

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Conclusion

Findings:

- Results in line with the extant literature as for the **positive role of relatedness** for the entry in new technological areas
- Academic inventors' involvement significantly **reduces the impact of relatedness** on the entry of regions in new specialisations
- Academic knowledge contributes to local innovations capabilities, enabling diversification patterns across loosely technologically related domains

Contribution:

- These findings contribute to the growing literature on the importance of **unrelatedness** for regional development trajectories
- An initial step toward the identification of the factors upon which **regional development policies** could leverage to avoid lock-in effects
- Implications for smart specialisation strategies oriented at long-term economic development include the strengthening of **academia-business linkages**

Next steps

- Spatial regression model to check for spatial dependence
- Breakdown my macro geographical areas and by time span
- Probabilistic choice model by region-tech-year

Thank you!